Asymptotic behavior of certain second-order differential equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic behavior of second-order dynamic equations

We prove several growth theorems for second-order dynamic equations on time scales. These theorems contain as special cases results for second-order differential equations, difference equations, and q-difference equations. 2006 Elsevier Inc. All rights reserved.

متن کامل

Asymptotic stability and asymptotic solutions of second-order differential equations

We improve, simplify, and extend on quasi-linear case some results on asymptotical stability of ordinary second-order differential equations with complex-valued coefficients obtained in our previous paper [G.R. Hovhannisyan, Asymptotic stability for second-order differential equations with complex coefficients, Electron. J. Differential Equations 2004 (85) (2004) 1–20]. To prove asymptotic stab...

متن کامل

On the Asymptotic Behavior of Solutions of Certain Third-order Nonlinear Differential Equations

where ψ ∈ C(R×R×R,R), f ∈ C(R×R,R), and p ∈ C([0,∞)×R×R×R,R). It is also supposed that the functions ψ, f , and p depend only on the arguments displayed explicitly, and the dots denote differentiation with respect to t. However, we shall require that f (0,0) = 0, the derivatives ∂ψ(x, ẋ, ẍ)/∂x ≡ ψx(x, ẋ, ẍ), ∂ψ(x, ẋ, ẍ)/∂ẍ ≡ ψẍ(x, ẋ, ẍ), and ∂ f (x, ẋ)/∂x ≡ fx(x, ẋ) exist and are continuous, an...

متن کامل

On the stability of linear differential equations of second order

The aim of this paper is to investigate the Hyers-Ulam stability of the  linear differential equation$$y''(x)+alpha y'(x)+beta y(x)=f(x)$$in general case, where $yin C^2[a,b],$  $fin C[a,b]$ and $-infty

متن کامل

Asymptotic Behavior of Positive Solutions of a Class of Systems of Second Order Nonlinear Differential Equations

The two-dimensional system of nonlinear differential equations (A) x′′ = p(t)y, y′′ = q(t)x , with positive exponents α and β satisfying αβ < 1 is analyzed in the framework of regular variation. Under the assumption that p(t) and q(t) are nearly regularly varying it is shown that system (A) may possess three types of positive solutions (x(t), y(t)) which are strongly monotone in the sense that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1970

ISSN: 0022-247X

DOI: 10.1016/0022-247x(70)90025-9